## Assignment 1.

This homework is due *Thursday*, September 10.

Collaboration is welcome. If you do collaborate, make sure to write/type your own paper and *credit your collaborators*. Your solutions should contain full proofs. Bare answers will not earn you much.

## 1. Quick cheat-sheet

REMINDER. On the set  $\mathbb{R}$  of real numbers there two binary operations, denoted by + and  $\cdot$  and called addition and multiplication, respectively. These operations satisfy the following properties:

- (A1) (a+b)+c=a+(b+c) for all  $a,b,c\in\mathbb{R}$ ,
- (A2) a+b=b+a for all  $a,b\in\mathbb{R}$ ,
- (A3) there exists  $0 \in \mathbb{R}$  s.t. 0 + a = a + 0 = a for all  $a \in \mathbb{R}$ ,
- (A4) for each  $a \in \mathbb{R}$  there exists an element -a s.t. a + (-a) = (-a) + a = 0,
- (M1) (ab)c = a(bc) for all  $a, b, c \in \mathbb{R}$ ,
- (M2) ab = ba for all  $a, b \in \mathbb{R}$ ,
- (M3) there exists  $1 \in \mathbb{R}$  s.t.  $1 \cdot a = a \cdot 1 = a$  for all  $a \in \mathbb{R}$ ,
- (M4) for each  $a \neq 0$  in  $\mathbb{R}$  there exists an element 1/a s.t.  $a \cdot (1/a) = (1/a) \cdot a = 1$ ,
- (D) a(b+c) = ab + ac and (b+c)a = ba + ca for all  $a, b, c \in \mathbb{R}$ .
- (NT)  $1 \neq 0$ .

REMINDER. Let  $\mathbb{A}$  be a set with two operations + and  $\cdot$  satisfying A1–A4, M1–M3 and D, NT. (For example,  $\mathbb{Z}$ ,  $\mathbb{Q}$ ,  $\mathbb{R}$ .) The set  $\mathcal{P} \subset \mathbb{A}$  is called the set of *positive elements* if

- (P1) If  $a, b \in \mathcal{P}$ , then  $a + b \in \mathbb{P}$  and  $ab \in \mathbb{P}$ ,
- (P2) If  $a \in \mathbb{A}$ , then exactly one of the following holds:  $a \in \mathcal{P}$ , a = 0,  $-a \in \mathcal{P}$ . Then we say a < b if and only if  $b a \in \mathcal{P}$ ;  $a \le b$  if and only if  $b a \in \mathcal{P} \cup 0$ .

## 2. Exercises

- (1) (Exercise 1.1.1 in Royden–Fitzpatrick) Let  $a, b \in \mathbb{R}$ . For  $a \neq 0$  and  $b \neq 0$ , show that  $(ab)^{-1} = a^{-1}b^{-1}$ . (Hint: check that  $a^{-1}b^{-1}$  satisfies definition of  $(ab)^{-1}$ .)
- (2) Show that  $-1 \cdot a = -a$  for all  $a \in \mathbb{R}$ .
- (3) (1.1.2) Verify the following:
  - (a) For each real number  $a \neq 0$ ,  $a^2 > 0$ . In particular, 1 > 0 since  $1 \neq 0$  and  $1 = 1^2$ .
  - (b) For each positive number a, its multiplicative inverse  $a^{-1}$  also is positive.
  - (c) If a > b for real numbers a, b, then

$$ac > bc$$
 if  $c > 0$  and  $ac < bc$  if  $c < 0$ .

(Hint: determine whether  $ac - bc \in \mathcal{P}$ .)

(d) If a > b > 0 and  $c \ge d > 0$  for real numbers a, b, c, d, then ac > bd.

— see next page —  $\,$ 

- (4) In each case below, determine if P is a set of positive elements (i.e. if P satisfies P1–P2).
  - (a)  $\mathbb{A} = \mathbb{Z}, P = \mathbb{N},$
  - (b)  $\mathbb{A} = \mathbb{Z}, P = -\mathbb{N},$
  - (c)  $\mathbb{A} = \mathbb{Q}$ ,  $P = \{r \in \mathbb{Q} : r > 1\}$ ,
  - (d)  $\mathbb{A} = \mathbb{C}$ ,  $P = \{z = x + iy \in \mathbb{C} : x > 0\}$ ,
  - (e) Prove that for  $\mathbb{A} = \mathbb{C}$ , there is no set of positive elements. (In other words, one cannot endow  $\mathbb{C}$  with a meaningful order.)
- (5) (1.1.4) Let a, b be real numbers.
  - (a) Show that if ab = 0 the a = 0 or b = 0. (Hint: multiply ab by  $a^{-1}$ .)
  - (b) Verify that  $a^2 b^2 = (a b)(a + b)$  and conclude that from part (a) that if  $a^2 = b^2$ , then a = b or a = -b.
  - (c) Let c be a positive real number. Define  $E = \{x \in \mathbb{R} \mid x^2 < c\}$ . Verify that E is nonempty and bounded above. Define  $x_0 = \sup E$ . Show that  $x_0^2 = c$  by doing the following:
    - (i) Assume  $x_0^2 < c$ . Show that you can find  $\varepsilon > 0$  such that  $(x_0 + \varepsilon)^2$  is still < c. Explain what is wrong with that.
    - (ii) Assume  $x_0^2 > c$ . Show that you can find  $\varepsilon > 0$  such that  $(x_0 \varepsilon)^2$  is still > c. Explain what is wrong with that.

Use part (b) to show that there is a unique x > 0 for which  $x^2 = c$ . It is denoted  $\sqrt{c}$ .

(6) (1.2.12) Problem 5c (together with in-class proposition about  $\sqrt{2}$ ) prove existence of at least one irrational number (*irrational* means "real but not rational"). Granted that at least one irrational number exists, prove that irrational numbers are dense in  $\mathbb{R}$ .